

KANGANKUNDE METALLURGICAL TEST WORK CONFIRMS HIGH RECOVERIES AND CONCENTRATE GRADES

Test work affirms recoveries of 70% TREO achievable and concentrate grades ranging from 55% to 68% TREO: globally superior quality of Kangankunde

HIGHLIGHTS

- Strong understanding of Feed Grade, Recovery & Concentrate Grade relationships developed
- Large and Pilot Scale classification test work now complete
- Multi-Gravity Concentrator working parameters optimised
- Magnetic Separation works now complete
- Concentrate Grade optimisation works well advanced
- Metallurgical variability test work nearing completion for input to Stage 1 Feasibility Study
- Further updates on final infill drilling assay results and award of Construction contract for Stage 1 mine development ahead of pending Feasibility Study

Lindian's Executive Chairman, Asimwe Kabunga commented: "We are pleased to again confirm high recoveries and concentrate grades from our extensive metallurgical test work program which has been ongoing for the past 12 months and is now nearing completion. The results are key for defining OPEX for our pending Feasibility Study for Stage 1 mine development and will be instrumental in benchmarking Kangankunde's concentrate grade and recoveries against existing producers. We expect the results will showcase Kangankunde's very robust project economics."

Lindian's Chief Executive Officer, Alistair Stephens added: "These metallurgical results clearly demonstrate an advanced understanding of input parameters and material variability necessary for Kangankunde's pending Stage 1 Feasibility Study. We are very encouraged by the results. "We anticipate that we will also report final assay results for the Indicated Resource definition, and complete mine design and mining schedules this month. We are very close to the final stages of the construction contract for Kangankunde's Stage 1 development, and we are confident this will confirm Stage 1 as a low-cost start-up operation."

Lindian Resources Limited (ASX:LIN) ("Lindian" or "the Company") is pleased to provide an update on metallurgical test work for the Kangankunde Rare Earths Project in Malawi. The test work, that is close to completion, reaffirms both high recoveries and concentrate grades which were first reported on 11 April 2023.

LARGE AND PILOT SCALE TESTING

During 2023, advanced metallurgical testing has been undertaken in South Africa and Australia on bulk samples collected from the Kangankunde site, and then freighted to South Africa for metallurgical work. These works have provided the basis for the engineering and scale-up data and the provision of marketing samples for evaluation.

CLASSIFICATION AND SPIRALLING TESTING

Screening and hydrocyclone classification testing have been undertaken at Multotec and LightDeepEarth laboratories in South Africa, demonstrated that better metallurgical recovery was obtained by screening compared to hydrocyclone classifiers. This resulted in the adoption of vibrating screens over hydrocyclones in the process design, to help minimse over-grinding and monazite mineral losses.

The Stack Sizer vibrating screen is a high-capacity and efficient fine sizing, vibrating wet screening machine. It consists of multiple screen panels that are stacked on top of each other and are vibrated to separate particles by size. This design allows for increased capacity, improved efficiency, and better performance compared to traditional vibrating screens. The Stack Sizer is commonly used in mineral processing, coal preparation, and other industrial applications requiring fine particle separation.

Image 1: Above: Landsky Vibrating Screen

MULTI GRAVITY SEPARATOR (MGS)

Multi-gravity separator testing was undertaken at Coremet in South Africa. Testing provided operational performance to larger scale MGS machines, better definition of operating conditions, and the production of samples for magnetic separation testwork. The success of the MGS testwork resulted in a reduction of screens and the elimination of spirals and shaking tables from the plant design. The concentrate grade from the MGS circuit is on average about 30% TREO representing a significant upgrade from feed grades.

Image 2: Multi Gravity Separator testing at Coremet, South Africa.

MAGNETIC SEPARATION

Pilot-scale magnetic separation testwork was undertaken at Nagrom laboratories in Perth, Australia. This testing provided advanced understanding of the magnetic separation operating conditions, as well as appropriate circuit and machine configuration. The concentrate grade from the MGS circuit is upgraded to concentrate grades ranging 55% to 65% TREO in pilot scale testing.

Image 3: Pilot-scale WHIMS Testing at Nagrom Laboratory in Perth, Australia

MONAZITE RARE EARTHS CONCENTRATE

Magnetic separation samples have been provided to third party laboratories in Perth for chemical assay and validation. The concentrate contains both a green and clear coloured monazite. Higher grades of concentrate are achieved with effective removal of strontium and barium carbonates, and iron and manganese oxide impurities. Given the high demand for concentrate from prospective offtake and funding partners, the Company is assessing the processing of a large batch of mineralisation to produce a large monazite concentrate stock.

Image 4: Above: Micrograph of green and clear monazite concentrate grading 64.7% TREO (assayed at Nargrom Laboratories). Refer Appendix 2. Scale bar (top left) is 40 micron.

Image 5: Above: Dried Kangankunde concentrate

METALLURGICAL CORE AND VARIABILITY TESTING

Previous metallurgical test work was based on selective and bulk surface samples. During the final stages of the core drilling campaign in 2023, metallurgical drill holes were undertaken in areas representative of initial mining (refer Appendix 1).

Lindian is in the closing stages of a metallurgical variability testing program that is being undertaken at ALS Metallurgy in Perth. This work provides information that tailors to mine planning schedules so that grade, recovery and rock type variations that can be used in association with mine and process plant production forecasts.

Lindian drilled seven (7) metallurgical drill holes within the mineral resource, targeting the areas that are marked for initial mining, from which eight (8) metallurgical testing composites were prepared.

This program has covered the following:

- Comminution testing has provided data on variability in crushing, milling and rock competency parameters,
- Mineralogical Analysis has provided data on variability in mineral distribution and mineral liberation,
- Multi Gravity Separator testing has provided understanding of variability in performance across key areas of the mineral resource,
- Concentrate Product Finishing work magnetic separation and impurity removal has and continues to provide data on expected quality of the mineral concentrate product.

Image 6: Mineralogical Inspection of Kangankunde drill core used in metallurgical testwork.

Collectively, this work was incorporated into the process and engineering design work (in late 2023) which has been undertaken concurrently and will continue to be incorporated in the front-end engineering design (FEED) stages. Upon the conclusion of this program, the metrics will be used in the feasibility study that is due to be released to the market shortly.

METALLURGICAL RESULTS

The current test work has been able to assess different recovery ranges relative to both the grade of mineralisation, rock types as well as depth and strike variation. The typical grade achieved by MGS processing alone is 30% TREO while final product concentrate grade after magnetic separation and product finishing ranges from 55% to 68%. Recoveries vary dependent on feed grade, rock type and the concentrate specification with an average of 70% achievable dependent on these feed type, operating and processing parameters. The completion of variability test work will complement current studies. These grade-rocktype-concentrate grade recovery parameters will form the basis of inputs of mine design (and mine schedules) and outputs to production forecast in the forthcoming feasibility study report.

METALLURGICAL FLOWSHEET

The test work has confirmed that the flow sheet, represented below, is best suited for the recovery of monazite. Importantly this flow sheet is a gravity circuit and dominated with power and water alone as the main consumables.

Above: Simplified process flowsheet for Kangankunde Rare Earths Project

PROCESSING PLANT

Lindian's team is on the closing stages of completing the preferred provider in relation to the tender of works and contract terms.

NEAR TERM MILESTONES

- Infill drill program assays,
- Indicated Resource,
- Mine Design and Mining Schedules,
- Contract awards,
- Capital estimates.

KANGANKUNDE INFERRED MINERAL RESOURCE

In August 2023, Lindian announced its maiden Mineral Resource Estimate (MRE) for the Kangankunde Rare Earths Project in Malawi of 261 million tonnes averaging 2.19% TREO above a 0.5% TREO cutoff grade, and estimated in accordance with JORC 2012 guidelines. The Company confirms that is not aware of any new information or data that materially affects the information included in the original ASX announcement (with JORC Table 1) released on 3 August 2023.

Resource Classification	Tonnes (millions)	TREO (%)	NdPr% of TREO** (%)	Tonnes Contained NdPr* (millions)	
Inferred Resource	261	2.19	20.2	1.2	

Mineral Resource using a 0.5% TREO cut-off grade. Rounding has been applied to 1.0Mt for tonnes and 0.1% NdPr% of TREO which may influence total calculation. * NdPr = $Nd_2O_3 + Pr_6O_{11}$, ** NdPrO% / TREO% x 100

ENDS -

This ASX announcement was authorised for release by the Board of Lindian Resources Limited.

For further information, please contact:

Asimwe Kabunga (Executive Chairman) Phone: +61 8 6557 8838 Email: info@lindianresources.com.au Alistair Stephens (CEO) Phone: +61 488 992 544 Email: info@lindianresources.com.au Ben Jarvis (Six Degrees IR) Phone: +61 413 150 448 Email: ben.jarvis@sdir.com.au

Forward Looking Statements

This announcement may include forward-looking statements, based on Lindian's expectations and beliefs concerning future events. Forward-looking statements are necessarily subject to risks, uncertainties and other factors, many of which are outside the control of Lindian, which could cause actual results to differ materially from such statements. Lindian makes no undertaking to subsequently update or revise the forward-looking statements made in this announcement, to reflect the circumstances or events after the date of the announcement.

About Lindian

RARE EARTHS

Lindian Resources Limited has ownership of Malawian registered Rift Valley Resource Developments Limited that has 100% title to Exploration Licence EPL0514/18R and Mining Licence MML0290/22, supported by an Environmental and Social Impact Assessment Licence No.2:10:16. In August 2023, Lindian released its maiden Mineral Resource Estimate (MRE) for the Kangankunde Rare Earths Project in Malawi of *261 million tonnes averaging 2.19% TREO*, refer ASX announcement of 3 August 2023.

BAUXITE

Lindian Resources Limited has Bauxite resources (refer company website for access to resources statements and competent persons statements) in Guinea with the Gaoual, Lelouma and Woula projects. Guinean bauxite is known as the premier bauxite location in the world, having high grade and low impurities premium quality bauxite.

Competent Persons Statement

The information in this Report that relates to exploration results, including metallurgical testing and results is based on information compiled by Mr. Alistair Stephens, who is a Fellow of the Australian Institute of Mining and Metallurgy (AusIMM). Mr. Stephens is the Chief Executive Officer of Lindian Resources Limited. Mr. Stephens has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves' (JORC Code). Mr. Stephens consents to the inclusion in this report of the matters based on the information in the form and context in which it appears.

The information in this report that relates to previous exploration results was prepared and first disclosed under the JORC Code 2012 and has been cross-referenced in the text to the date of the original announcement to the ASX. Unless otherwise stated, where reference is made to previous releases of exploration results in this announcement, the Company conforms that it is not aware of any new information or data that materially affects the information included in those announcements.

Competent Persons Statement – Kangankunde Mineral Resource Estimate

The information in this report that relates to a Mineral Resource Estimate for the Kangankunde Rare Earths deposit was first released to the ASX on 3 August 2023 in an announcement titled "Lindian Reports Maiden Mineral Resource Estimate of 261 Million Tonnes at High Grade of 2.19% TREO", is available to view at www.lindianresources.com.au and for which Competent Persons' consents were obtained. The Competent Persons' consents remain in place for subsequent releases by the Company of the same information in the same form and context, until the consent is withdrawn or replaced by a subsequent report and accompanying consent. Unless otherwise stated, where reference is made to previous releases of a Mineral Resource Estimate for the Kangankunde Rare Earths deposit in this announcement, the Company confirms that it is not aware of any new information or data that materially affects the Mineral Resource Estimate included in those announcements and all material assumptions and technical parameters underpinning the Mineral Resource Estimate included in those announcements continue to apply and have not materially changed. The information in this report that relates to a Mineral Resource Estimate for the Kangankunde Rare Earths deposit was prepared and first disclosed under the JORC Code 2012 and has been properly and extensively cross-referenced in the text to the date of the original announcement to the ASX.

Appendix 1

	Drill hole number	Assay interval	Date reported
North Pit area	KGKDD005	58 metres @ 4.54% TREO	17 July 17 2023
	KGKDD006	58 metres @ 3.04% TREO	17 July 17 2023
	KGKDD007	55 metres @ 4.65% TREO	17 July 17 2023
	KGKDD008	58 metres @ 2.37% TREO	17 July 17 2023
South Pit area			
	KGKDD010	75 metres @ 3.15% TREO	1 February 2024
West Pit area			
	KGKDD011	75 metres @ 3.57% TREO	1 February 2024
	KGKDD012	70 metres @ 3.44% TREO	1 February 2024

Metallurgical drill holes used in variability analysis are tabled below and have been previously reported.

Appendix 2

Metallurgical concentrate Analysis

	Sample number	Assay interval	Assay method
Concentrate	SPLKC0023	64.7% TREO	ICP analysis at Nagrom Laboratory

Appendix 3

JORC Code, 2012 Edition – Table 1 report

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary				
Sampling	• Nature and quality of sampling (e.g. cut channels, random chips, or specific	Metallurgical test work				
techniques	specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	Selected samples have been collected to test initial metallurgical recovery. Later bulk samples of mineralisation from various locations around the project have been used to improve representivity and upscale test work.				
	 Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. 	Core drilling using HQ diameter core is collected into core trays with interval markers. Locations have been selected to test depth variability and to provide a more representative sample for metallurgical				
	• Aspects of the determination of mineralisation that are Material to the Public Report.	analysis.				
	 In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 					
Drilling techniques	• Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger,	Diamond Core Drilling				
Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).		Core size was HQ triple tube with a nominal diameter of 61.1mm.				
Drill sample	Method of recording and assessing core and chip sample recoveries and results assessed	Diamond Core Drilling				
receivery		Core recovery was calculated by measuring actual core length versus drillers core run lengths. Core				
	 Measures taken to maximise sample recovery and ensure representative nature of the samples. 	and averaged 92%.				
	• Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	No relationship exists between core recovery and grade.				
Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies		All core has been geologically logged by the onsite geologist and chip and core trays retained and photographed				
	and metallurgical studies.	Logging is qualitative with fields including shade, colour, weathering, grainsize, texture, lithology,				
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography	veining, mineralisation and alteration.				
		Additional non-geological qualitative logging includes comments for sample recovery, moisture, and hardness for each logged interval.				
	The total length and percentage of the relevant intersections logged.					

Sub-sampling	•	If core, whether cut or sawn and whether quarter, half or all core taken.	Diamond Core	Drilling								
techniques and sample preparation	•	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	Subset intervals	s have b	een useo	d where g	geologica	l and mir	neralogical	continui	ty exists.	
	•	For all sample types, the nature, quality and appropriateness of the sample preparation technique.										
	•	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.										
	•	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.										
	•	Whether sample sizes are appropriate to the grain size of the material being sampled.										
Quality of assay	٠	The nature, quality and appropriateness of the assaying and laboratory procedures	Assay and Lab	oratory	Proced	ures – A	ll Sample	S				
laboratory tests			Samples were	dispatch	ed by air	freight o	direct to Ir	ntertek la	boratory Jo	ohannes	burg South	h Africa for
, , , , , , , , , , , , , , , , , , , ,	•	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters	sample prepara	ation.								
		used in determining the analysis including instrument make and model, reading times,	Description									
			Received sam	nple weig	ght							
	٠	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates,	Sample Login	w/o Bar	code							
		external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of	High tempera	ture dryi	ng							
		bias) and precision have been established.	Fine crushing	- 70% <	<2mm							
			Split sample -	- Riffle sp	olitter							
			Pulverise 250	g to 85%	b passing	g 75 micr	on					
			Crushing QC	Test								
			Pulverising Q	C test								
			Following samp Perth for analys	ole prepa sis	ration, a	30 gram	n pulverize	ed subsa	mple is shi	pped by	airfreight t	o Intertek
			The assay tech	nique us	ed for R	EE was L	ithium Bo	rate Fus	ion ICP-MS	S (lab co	de CP MS-	OES
			(FB6/OM)). This elements. Elem	s is a rec nents ana	ognised alysed at	industry ppm lev	[,] standard /els:	analysis	technique	for REE	suite and a	associated
				Ba	Cd	Ce	Dv	Fr	Fu	Ga	Gd	
				Ho	La	Lu	Nb	Nd	Pr	Rb	Sc	
				Sm	Sr	Та	Tb	Th	Tm	U	Y	
				Yb	Zn	Zr	Al2O3	CaO	Fe2O3	MnO	P2O5	
				SiO2								
			The sample pre	paration	and ass	ay techr	niques use	ed are inc	dustry stan	dard and	l provide a	total analysis.
			All laboratories	used are	e ISO 17	025 accı	redited.					-
			QAQC									
			Laboratory QA	QC stand	dards us	ed durin	g analysis					

	Alternative Analysis No alternative analytic	<i>Technique</i> al method analysis	has been undertaken.				
		Metallurgical Sample Assays					
	Samples produced du indicative assays and and Nagrom Laborato	rring metallurgical t then cross checke pries.	testwork are initially and d with chemical digest l	alysed by a bench laboratory assays	a top XRF for at ALS Laboratories		
 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	Data collected and en compiled and stored i conducted on data en Assay data was receiv Data validation of assa All assay data receive Conversion of elemen	tered into Excel sp n a secure databas try. /ed in digital format ay data and samplin d from the laborato ital analysis (REE) t	readsheet. Data are the se managed by Spectra t from the laboratory. Ing data have been cond ory in element form is u o stoichiometric oxide (en compiled with a Projects. Data ve ducted to ensure nadjusted for data (REO) was undert	assay results arification is data entry is correct. a entry. taken by spreadsheet		
	and-resources/resources/	ces-and-extras/ele	e: <u>nttps://www.jcu.edu.a</u> ment-to-stoichiometric-	u/advanced-analy oxide-conversion	<u>-factors)</u>		
		Element ppm	Conversion Factor	Oxide Form			
		Ce	1.2284	CeO ₂			
		Dy	1.1477	Dy ₂ O ₃			
		Er	1.1435	Er ₂ O ₃			
		Eu	1.1579	Eu ₂ O ₃			
		Gd	1.1526	Gd ₂ O ₃			
		Ho	1.1455	Ho ₂ O ₃			
		La	1.1728	La ₂ O ₃			
		Lu	1.1371	Lu ₂ O ₃			
		Nd	1.1664	Nd ₂ O ₃			
		Pr	1.2082	Pr_6O_{11}			
		Sm	1.1596	Sm ₂ O ₃			
		ID Tm	1.1762	TD4O7			
		IIII V	1.1421	Y ₂ O ₂			
		Yh	1 1387	1203 Yh2O2			
	Rare earth oxide is the used for compiling RE Note that Y ₂ O ₃ is inclu TREO (Total Rare Ear Dy ₂ O ₃ + Ho ₂ O ₃ + Er ₂ O HREO (Heavy Rare Ea Yb ₂ O ₃ + Y ₂ O ₃ + Lu ₂ O ₃ LREO (Light Rare Ear	e industry accepted iO into their reporti- uded in the TREO of th Oxide) = $La_2O_3 + O_3 + Tm_2O_3 + Yb_2O_3^2$ arth Oxide) = $Sm_2O_3^2$ th Oxide) = $La_2O_3 + O_3^2$	d form for reporting rare ng and evaluation grou alculation. $+ CeO_2 + Pr_6O_{11} + Nd_2O_3$ $+ Y_2O_3 + Lu_2O_3$. $D_3 + Eu_2O_3 + Gd_2O_3 + Tb$ $- CeO2 + Pr_6O_{11} + Nd_2O_3$	e earths. The follc ps: 0₃ + Sm₂O₃ + Eu₂4 №07 + Dy₂O₃ + Ho D₃	wing calculations are D ₃ + Gd ₂ O ₃ + Tb ₄ O ₇ + 2O ₃ + Er ₂ O ₃ + Tm ₂ O ₃ +		
	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 The verification of significant intersections by either independent or alternative analytic indicative assays and and Nagrom Laborate The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 The verification of significant intersections by either independent or alternative analytical method analysis indicative assays and then cross checkes and Nagron Laboratories. The verification of significant intersections by either independent or alternative and Nagron Laboratories. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. Discuss any adjustment to assay data. Element panel analysis (REE) Dy a data encire analysis (REE) Dy a data encire and overas/electronic of elemental analysis (REE) Dy a data encire and overas/electronic of elemental analysis (REE) Dy a data encire and overas/electronic of elemental analysis (REE) Dy a data encire and overas/electronic of elemental analysis (REE) Dy a data encire and overas/electronic of elemental analysis (REE) Dy a data encire and overas/electronic of elemental analysis (REE) Dy a data encire and overas/electronic of elemental analysis (REE) Dy a data encire and overas/electronic of elemental analysis (REE) data entre element panel data entre element panel data entre elemental analysis (REE) data entre elemental analysis (REE) data entre elemental analysis (REE) data entre elemental elementale elemental elemental elemental elemental elemental elemental	No alternative analysical method analysis has been undertaken. No alternative analysical method analysis has been undertaken. Metallurgical Sample Assays Samples produced during metallurgical testwork are initially an indicative assays and then cross checked with chemical digest in and Nagrom Laboratories. • The use of twinned holes. • Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. • Discuss any adjustment to assay data. • Discuss and adjuster to the assay data metaston to the assay data metallow metallow to the	Provide analysis and the analysis has been undertaken. Model analysis and the assays Samples produced during metallurgical testvork are initially analysed by a bench indicative assays and then cross checked with chemical digest laboratory assays and the across checked with chemical digest laboratory assays and the across checked with chemical digest laboratory assays and the across checked with chemical digest laboratory assays and the across checked with chemical digest laboratory assays and the across checked with chemical digest laboratory assays and the across checked with chemical digest laboratory. The use of twinned holes. Data collected and entred into Excel spreadsheet. Data are then compiled with company data, data entry procedures, data verification, data storeg (physical and electronic) protocols. Data collected and electronic protocols. • Discuss any adjustment to assay data. All assay data received in digital format from the laboratory in element form is unadjusted for data. • Discuss any adjustment to assay data. Element pm conversion factors. (Social conversion factors.) • Discuss any adjustment to assay data. Element pm conversion factors.) • Discuss any adjustment to assay data. Element pm conversion factors.) • Discuss any adjustment to assay data. Element pm conversion factors.) • Discuss any adjustment to assay data. Element pm conversion factors.) • Discuss any adjustment to assay data. Element pm conversion factors.) • Discuss any adjustment to assay data.		

		$NdPrO\% = Nd_2O_3 + Pr_6O_{11}$
		NdPrO% of TREO= NdPrO%/TREO x 100
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	Drill hole collar locations reported have been surveyed by differential GPS and are considered accurate to 0.2m. Datum WGS84 Zone 36 South was used for location data planning, collection and storage. This is the appropriate datum for the project area. No grid transformations were applied to the data. Downhole surveys were acquired using non-magnetic gyroscope survey Topography is derived from SRTM 30 metre digital elevation database.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	Drill spacing for this phase of drilling is selected within preliminary pit shells for mine planning purposes. No mineral resource estimation has been undertaken. No sample compositing has been used.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	The relationship between mineralisation and drill orientation is not known.
Sample security	The measures taken to ensure sample security.	After collection, the samples were transported by Company representatives via road to Lilongwe and dispatched via airfreight to Intertek Johannesburg South Africa. Sample shipments are managed by a professional cargo freight company and remain secure during transport. Following sample preparation subsamples are shipped to Perth Australia by Intertek using DHL. Samples are received in Australia and subject to customs inspection and quarantine treatment.
		Samples were subsequently transported from Australian customs to Intertek Perth via road freight.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No audits or reviews have been undertaken

Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	The Kangankunde Project comprising granted Exploration Licence EPL0514/18R and Mining Licence MML0290/22 is 100% owned by Rift Valley Resource Developments (RVRD) a Malawian registered company. Lindian Resources currently holds 67% of RVRD with a binding share purchase agreement in place to acquire 100 % of RVRD.
	• The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	
Exploration done	Acknowledgment and appraisal of exploration by other parties.	Previous exploration includes:
by other parties		1952-1958: Eight trenches excavated. No data records known to exist.
		1959: Geological mapping, ten trenches excavated, seven drill holes drilled below main trenches. Data not sighted.
		1965: Ministry of Natural Resources, Geological Survey Department of Malawi undertook advanced mapping, drilling, sampling, and metallurgical test work.
		1972-1981: Trench mapping and sampling, adit driven 300 metres north to south with several crosscuts. Diamond drilling from crosscuts. Pilot plant operated producing strontianite and monazite concentrate. Limited data available in hard copy only.
		1987- 1990: Feasibility study activities including surface core drilling, processing studies, geotechnical and groundwater studies, estimation of "geological reserves" (Not JORC compliant). Limited data available in hard copy reports.
		Historical data is largely not available or not readily validated and is currently not reported.
Geology	Deposit type, geological setting and style of mineralisation.	Intrusive carbonatite containing monazite as the main rare earth bearing mineral.
		The Kangankunde carbonatite complex is characterized by an elliptic structure centring Kangankunde Hill. The diameters in N-S and E-W directions are 900m and 700m, respectively.
		In the ellipse, the following rocks are zonally arranged from the centre to the outer part; carbonatites, carbonatized breccias, wall rock / carbonatite breccias and basement rocks.
		The carbonatites are dolomitic, sideritic and ankeritic and at surface are distributed widely on the northern and western slopes of the Kangankunde Hill. Manganese carbonatite is found at the top and on the eastern slope of the hill.
		Monazite is found in all carbonatite types in varying quantities. Other associated minerals are strontianite, barite and apatite.
Drill hole Information	• A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	The material information for relating to this announcement are contained in Appendix 1.
	 easting and northing of the drill hole collar 	
	 elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar 	

Criteria	JORC Code explanation	Commentary
	 dip and azimuth of the hole 	
	o down hole length and interception depth	
	◦ hole length.	
	• If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	
Data aggregation	• In reporting Exploration Results, weighting averaging techniques, maximum and/or	Reported intersections are length weighted averages.
methods	minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.	No maximum or minimum grade cutting has been applied.
	 Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. 	All reported intercepts are drilled within the orebody and are rare earth mineralised with the lowest grade of 0.35%TREO reported. No geological natural cut-off has been observed and an economic cut-off is not appropriate at this stage of the project.
	• The assumptions used for any reporting of metal equivalent values should be clearly stated.	Mineralised zones of higher grade within a fully mineralised hole have been highlighted using a threshold of 2% TREO with a maximum of 5 metres of contiguous internal waste used in the calculation. This cut-off is consistent with other similar deposits.
		No metal equivalents values are used.
Relationship	• These relationships are particularly important in the reporting of Exploration Results.	Down hole lengths reported, true widths are not known.
between mineralisation widths and	 If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. 	
intercept lengths	• If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Not applicable
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	This report contains all results that are consistent with the JORC guidelines. Where data may have been excluded, it is considered not material.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Multi element analysis has been conducted including potential radionuclides uranium (U) and thorium (Th) which are both reported in Appendix 2
Further work	• The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).	Future work programs include trenching, delayed mapping and sampling and potentially drilling.
	• Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	